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Introduction. In 1965, E. Arthurs and J. L. Kelly, Jr.—who were employed
as engineers at Bell Lab—published in BSTJ Briefs a short paper1 bearing
a title “On the simultaneous measurement of conjugate observables” which
most quantum physicists could be expected to find perplexing. Within a few
months C. Y. She and H. Heffner devised an alternative approach2 to the
theory of simultaneous measurement that reproduced the results first obtained
by Arthurs and Kelly, and by about 1980 the subject—stimulated mainly by
the practical needs of quantum opticians and the development of quantum
information theory—had begun to generate wide interest.3

That early work took John von Neumann’s idealized theory of quantum
measurement as its point of departure, but more recently the theory of
generalized (non-ideal) quantum measurement has been brought into play. It
is from that point of view that S. M. Barnett approaches the subject,4 and
it is Barnett’s brief survey (intended to illustrate the utility of the positive
operator-valued measure (POVM) concept) that has motivated the following
discussion.

1 Bell Systems Technical Journal 44, 725–729 (1965). This was a journal
seldom consulted by most physicists (it ceased publication in 1983), though it
was the journal in which the results of the Davisson-Germer electron diffraction
experiment were first reported (1928), the journal in which Claude Shannon
published his “A mathematical theory of communication” (1948), the journal
in which W. Boyle and G. E. Smith announced their invention of the charge-
coupled device (1970) and in which many other important developments were
first reported.

2 “Simultaneous measurement of noncommuting observables,”Phys.Rev.152,
1103–1110 (1966).

3 For major references see the bibiography in Ingrid Olson, “Simultaneous
measurement of conjugate observables” (Reed College Thesis, 2006).

4 Quantum Information (2009), pages 97–98.
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Schrödinger’s inequality. From the detailed history presented in Chapter 7
(§7.1. “The Uncertainty Relations”) of Jammer’s The Conceptual Development
of Quantum Mechanics (1966) we learn that development of the Heisenberg
uncertainty principle was not at all the straightforward exercise that textbooks
commonly respresent it to have been, and that many physicists (Bohr, Pauli—
the usual suspects—plus also Weyl, Kennard, Ruark, Condon, Robertson)
contributed to the final sharp formulation of Heisenberg’s initial insight. Dirac
and (independently) Jordan had observed already in 1926 that—in view of the
central place which they assigned to the commultation relation x p− p x = i! I—
it became impossible to assign sharp values simultaneously to the position
and momentum of a quantum particle. Heisenberg undertook to quantify the
statistical relationship between x-values and p -values, and arrived in 1927
at the statement ∆x∆p = !, which—thus introducing a persistent element
of confusion into this story—he attempted to account for physically as an
inevitable “observer effect” (think of “Heisenberg’s microscope”).

In the spring of 19305 Schödinger was studying teh problem of how to
distribute, in an optimal simultaneous measurement of p and x at time t0, the
unavoidable uncertainty 1

2! between two variables in such a way that at a given
later instant t the uncertainty ∆x in position will be minimal. Sommerfeld
drew his attention to recent papers by Condon and Robertson (1929) which
Schrödinger instantly saw could be improved upon:6

Many copies of |ψ) are presented to an A-meter, respresented by the self-
adjoint operator A . The expected mean of the A-meter readings is

〈A〉 = (ψ|A |ψ)

Presentation of many copies of |ψ) to a B-meter supplies

〈B〉 = (ψ|B |ψ)

Use that |ψ)-dependent data to construct “centered” operators

a = A − 〈A〉 I and b = B − 〈B〉 I

The “centered 2nd moments” (or “variance” σ2 = “squared standard deviation”
=“squared uncertainty”) of the A/B data can then be described

(∆A)2 = (ψ|a2|ψ) and (∆B)2 = (ψ|b2|ψ)

5 I quote here from Jammer’s page 336.
6 E. Schrödinger, “Zur Heisenbergschen Unshärfeprinzip,” Berliner Berichte,

296–303 (1930). I have taken my argument from my Quantum Mechanics
notes (1967/68), Chapter 3, pages 55–56. For a somewhat truncated version
of the same argument see §3.5.1 in D. J. Griffiths, Introduction to Quantum
Mechanics (2nd edition, 2005). Quite good also—from many points of view—is
the Wikipedia article “Uncertainty principle,” which reproduces the same line
of argument.
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Define
|a) = a |ψ) and |b) = b |ψ)

Then by the Cauchy-Schwarz

(∆A)2(∆B)2 = (a|a)(b|b)
≥ (a|b)(b|a) = |(a|b)|2 with equality iff |a) ∼ |b)

= |(ψ|a b |ψ)|2

Write
a b = a b + b a

2
+ i a b − b a

2i

and notice that the self-aqjointness of a and b implies that of both 1
2 [a , b ]+

and 1
2i [a , b ]−. We therefore have

(∆A)2(∆B)2 ≥
∣∣∣
〈

a b + b a
2

〉
+ i

〈
a b − b a

2i

〉∣∣∣
2

=
〈

a b + b a
2

〉2
+

〈
a b − b a

2i

〉2

By quick calculation

a b ± b a =
{

A B + B A − 2A〈B〉 − 2B〈A〉 + 2〈A〉〈B〉
A B − B A

so
〈a b ± b a〉 =

{
〈A B + B A〉 − 2〈A〉〈B〉
〈A B − B A〉

which gives Schrödinger’s inequality

(∆A)2(∆B)2 ≥
〈

A B − B A
2i

〉2
+

[〈
A B + B A

2

〉
− 〈A〉〈B〉

]2
(1.1)

≥ greater of
{〈

A B − B A
2i

〉2
,

[〈
A B + B A

2

〉
− 〈A〉〈B〉

]2
}

(1.2)

In the most familiar instance we therefore have

(∆x)2(∆p)2 ≥
〈

x p − p x
2i

〉2
+

[〈
x p + p x

2

〉
− 〈x〉〈p〉

]2

≥
〈

x p − p x
2i

〉2
=

〈
i! I
2i

〉2
= (!/2)2

⇓
∆x∆p ≥ 1

2!

In classical statistics, if x and y are random variables then one has (for all
m and n)

〈xmyn〉 = 〈xm〉〈yn〉 iff x ane y are statistically independent

The number 〈xy 〉 − 〈x〉〈y 〉 provides therefore a leading indicator of the extent
to which x and y are statistically dependent or correlated. On the right side
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of (1) we encounter just such a construction

CAB [|ψ)] ≡
〈

a b + b a
2

〉
=

〈
A B + B A

2

〉
− 〈A〉〈B〉 (2)

which it becomes natural in this light to call the “quantum correlation
coefficient.”7

If A and B commute then (1.2) supplies

(∆A)2(∆B)2 ≥
[
〈A B〉 − 〈A〉〈B〉

]2

The eigenvectors (but not the eigenvalues) of A and B are in this case shared.
If |ψ) is such a shared eigenvector (A |ψ) = α|ψ) and B |ψ) = β|ψ)) then

(∆A)2(∆B)2 ≥ [αβ − αβ ]2 = 0
= 0 because ∆A = ∆B = 0

But linear combinations of such (orthogonal) eigenvectors give ∆A ∆B > 0.
Suppose, for example, that |ψ) = cos θ |ψ1) + sin θ |ψ2). Then

CAB [|ψ)] = (α1β1 cos2 θ + α2β2 sin2 θ)

− (α1 cos2 θ + α2 sin2 θ)(β1 cos2 θ + β2 sin2 θ)

= (α1 − α2)(β1 − β2) cos2 θ sin2 θ

which give back the preceding result as a degenerate special case (set θ = nπ/2
with n = 0,±1,±2, . . .).

More interesting are results that follow from the assumption that A and B
are conjugate:

A B − B A = i I

Introduce operators

W = 1√
2
(A + iB) and W+ = 1√

2
(A − iB)

which—since not self-adjoint—do not represent observables, but are the key to
all that follows. From

W W+ = 1
2 (A A − iA B + iB A + B B) = 1

2 (A A + B B + I)
W+W = 1

2 (A A + iA B − iB A + B B) = 1
2 (A A + B B − I)

obtain
W W+ − W+W = I =⇒

{
W W+ = W+W + I
W+W = W W+ − I

7 See page 202 inD. Bohm,Quantum Mechanics (1951). Generally A B )= B A .
In (2) we are told to “split the difference.”
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The operators W W+ and W+W are manifestly self-adjoint (eigenvalues therefore
real, and eigenvectors orthogonal) and positive semi-definite (ψ|W W+|ψ) ≥ 0
and (ψ|W+W |ψ) ≥ 0 for all |ψ)).8 Suppose it to be the case that

W+W |α) = λ |α) ⇐⇒ W W+|α) = (λ + 1) |α)

Multiplication by W+ supplies W+W W+|α) = (W W+− I)|α) = λW+|α) whence
W+W · W+|α) = (λ + 1) · W+|α) and similarly W+W · W |α) = (λ − 1) · W |α).
So ascending powers of W+ produce eigenvectors |α+n) = (W+)n|α) with
eigenvalues {λ, λ + 1, λ + 2, λ + 3, . . .} while ascending powers of W produce
eigenvectors |α−n) = (W)n|α) with eigenvalues {λ, λ − 1, λ − 2, λ − 3, . . .}.
The latter sequence must, however, truncate to avoid violation of the positivity
condition: there must exist a (normalized) state |0) with the property that

W |0) = 0

Building on that foundation, we construct

|1) = c0 W+|0)
|2) = c1 W+|1)
|3) = c2 W+|2)

...
|n + 1) = cn W+|n)

...

To evaluate the constants cn (which can without loss of generality be assumed
to be real) we proceed

(n|W W+|n) = (n + 1)(n|n) = n + 1

= c−2
n (n + 1|n + 1) = c−2

n

}
=⇒ cn = 1√

n+1

It now follows that
|n) = 1√

n
W+|n − 1)

= 1√
n(n−1)

(W+)2|n − 2)

...
= 1√

n!
(W+)n|0)

For the purposes at hand these results are most conveniently written

W |n) = gn|n − 1), W+|n) = gn+1|n + 1) with gn =
√

n

from which we recover W+W |n) = gn W+|n − 1) = gngn|n) = n|n).

8 The standard notation a a+ is not available because the symbol a has been
preempted. The W -notation is intended to draw attention to the circumstance
that W W+ and W+W possess “Wishart structure.”
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Variants of the preceding algebra are encountered in many quantum
mechanical contexts, all of which derive from Dirac’s approach to the harmonic
oscillator problem.9 It is central to quantum optics (quantized oscillatory
modes of the radiation field),10 And it provides the formal model upon which
Witten’s “supersymmetric quantum mechanics” is based.11 But the immediate
point of the exercise emeerges when we look back again to Schrödinger’s
inequality (1). If the state presented repeatedly to the A-meter on Monday—
and to the B-meter on Tuesday—is |n), and if A and B are conjugate
([A , B ] = i I) then

(∆A)2(∆B)2 ≥ 1
4 +

{
CAB [|n)]

}2

where
CAB [|n)] = 1

2 (n|A B + B A |n) − (n|A |n)(n|B |n)

But from
A = 1√

2
(W+ + W) and B = i 1√

2
(W+ − W)

we obtain
A B + B A = i(W+W+ − W W)

so12

CAB [|n)] = i 1
2

{
(n|W+W+ − W W |n) − (n|W+ + W |n)(n|W+ − W |n)

}

= i 1
2

{
gn+1gn+2(n|n + 2) − gn−1gn(n|n − 2)

−
[
gn+1(n|n + 1) + gn(n|n − 1)

][
gn+1(n|n + 1) − gn(n|n − 1)

]}

= 0 by (n|m) = δnm (3)

For such states we therefore have

(n|A |n) = (n|B |n) = 0 and ∆A∆B ≥ 1
2

The inequality can, however, be sharpened; from

(n|A2|n) = (n|B2|n) = 1
2 (n|W+W + W W+|n) + two terms that vanish

= 1
2

[
gngn + gn+1gn+1

]
(n|n)

= 1
2 (2n + 1)

9 §34, Principles of Quantum Mechanics (3rd edition, 1947). For an account
of some elegant elaborations of the method due to Schwinger see Chapter 0,
pages 40–42 in my Advanced Quantum Topics (2000).

10 See, for example, §3.1.1 in Yoshihisa Yamamoto & Ataç İmamoḡlu,
Mesoscopic Quantum Optics (1999).

11 See Christopher Lee, “Supersymmetric quantum mechanics” (Reed College
Thesis, 1999), which provides an elaborate bibliography.

12 If n = 0 or 1 some of the terms in the following expression—namely g−1,
|−1) and |−2)—are undefined, but those formal artifacts all vanish, essentially
because Wp|0) = 0 : p = 1, 2, . . . .
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we obtain
∆A∆B = n + 1

2 ≥ 1
2

It is no accident that those numbers are proportional to the energy eigenvalues
En = !ω(n + 1

2 ) of a quantum oscillator.

The states |n) acquire importance partly (as in oscillator theory) from the
circumstance that they are eigenstates of W+W and W W+, but more generally
from (3); they are minimal uncertainty states that in quantum mechanics
engender wavepackets of “minimal dispersion”(see Griffiths6, §3.5.2) and in
quantum optics13 are called “coherent states.”

The simplest possible non-commutation relation [A , B ] = i I (from which
the preceding discussion proceeded) does not admit of finite-dimensional
realization (compare the traces of the left and right sides of [A, B ] = i I).
But finite-dimensional quantum mechanics presents many contexts in which
Schrödinger’s inequality proves valuable. Most commonly those arise when one
has in hand either a trace-wise orthonormal basis {E1, E2, . . . , EN2} in the space
of N × N hermitian matrices

A =
N

2∑

j=1

ajEj with ak = 1
N

trAEk by 1
N

trEjEk = δjk

or a set {F1, F2, . . . , Fn} of hermitian matrices that is closed under commutation
(in short, a Lie algebra):

[Fi, Fj ] =
∑

k

ci
k

jFk

Look, for example, to the Pauli matrices

σσ0 =
(

1 0
0 1

)
, σσ1 =

(
0 1
1 0

)
, σσ2 =

(
0 −i
i 0

)
, σσ3 =

(
1 0
0 −1

)

which possess both of the aforementioned properties: they are trace-wise
orthonormal

1
2 tr σσmσσn = δmn

and since multiplicatively closed

σσ0σσn = σσn : n = 0, 1, 2, 3
σσjσσk = δjkσσ0 + iεjklσσl : {j, k, l} = 1, 2, 3

are closed also under commutation: [σσj , σσk ] = 2iεjklσσl. Suppose

A = a1σσ1 + a2σσ2 + a3σσ3 = aaa···σσ and B = bbb···σσ

13 See C. C. Gerry & P. L. Knight, Introductory Quantum Optics (2005),
Chapter 3.
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Then AB = (aaa···bbb)σσ0 + i(aaa × bbb)···σσ supplies

AA = (aaa···aaa)σσ0 and BB = (bbb···bbb)σσ0

AB + BA = 2(aaa···bbb)σσ0

AB − BA = 2i(aaa × bbb)···σσ

and we have 〈A〉 =
∑

ak〈σσk〉 = 〈aaa···σσ〉 and 〈B〉 = 〈bbb···σσ〉 whence

(∆A)2(∆B)2 =
[
(aaa···aaa) − 〈aaa···σσ〉2

][
(bbb···bbb) − 〈bbb···σσ〉2

]
(4.1)

while the Schrödinger inequality supplies a statement with quite a different
appearance:

(∆A)2(∆B)2 ≥
〈
(aaa × bbb)···σσ

〉2 +
[
(aaa···bbb) − 〈aaa···σσ〉〈bbb···σσ〉

]2 (4.2)

Butwhen(withMathematica’s assistance) I usedrandomlyselected real 3-vectors
aaa and bbb to construct hermitian matrices A and B I was surprised to find that
for every the normalized complex 2-vector |ψ) the expressions on the right sides
of (4.1) and (4.2) are identical ; we have stumbled upon a curious identity

(aaa···aaa)(bbb···bbb) − (aaa···bbb)2 = (bbb···bbb)〈aaa···σσ〉2 + (aaa···aaa)〈bbb···σσ〉2 +
〈
(aaa × bbb)···σσ

〉2

− 2(aaa···bbb)〈aaa···σσ〉〈bbb···σσ〉 (5.1)

In the case A = σσ1, B = σσ2 the preceding identity assumes the (strange but)
suggestively simple form

1 = (ψ|σσ1|ψ)2 + (ψ|σσ2|ψ)2 + (ψ|σσ3|ψ)2 : all |ψ) (5.2)

I am satisfied on the basis of exhaustive numerical evidence that the identities
(5) are both correct, which means that the ≥ in (4.2) should always be read
as equality. . . for, as it happens, a very simple reason. The ≥ in question was
inherited from Cauchy-Schwarz, and reduces to = if and only if

|α) ≡ A|ψ) − (ψ|A|ψ) · |ψ) ∼ |β ) ≡ B|ψ) − (ψ|B|ψ) · |ψ)

From (ψ|α) = (ψ|β) = 0 we learn that both of those vectors are orthogonal
to |ψ), which in 2-space means that they are proportional: |α) ∼ |β ). We are
brought thus to the striking conclusion that when a randomly selected qubit |ψ)
is presented repeatedly first to an arbitrarily designed A-meter and then—in
a separate run—to an arbitrarily designed B-meter, analysis of the data thus
generated invariably shows the product ∆A∆B to be minimal.14 In higher-
dimensional contexts automatic minimality is lost, for a reason now evident.

14 When we wrote A = aaa···σσ and B = bbb···σσ we tacitly assumed the matrices
A and B to be traceless, but it is now clear that invariable minimality persists
even in the absence of tracelessness.
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Suppose the states presented to our meters are not identical, but are drawn
from the mixed ensemble described by the density operator ρ. Review of its
derivation shows that Schrödinger’s inequality (1) remains in force, provided

〈XXX〉 = (ψ|XXX|ψ) is reinterpreted to mean tr(ρXXX)

Note in this regard that the effect state superposition |ψ) −→ c1|ψ1) + c2|ψ2)
—which sends pure states to pure states—is non-linear

(ψ|XXX|ψ) → c̄1c1(ψ1|XXX|ψ1) + c̄1c2(ψ1|XXX|ψ2) + c̄2c1(ψ2|XXX|ψ1) + c̄2c2(ψ2|XXX|ψ2)

while the effect of mixing ρ −→ p1ρ1 + p2ρ2 is linear

tr(ρXXX) −→ p1tr(ρ1XXX) + p2tr(ρ2XXX)

Non-linear effects do, however, enter into the description of CAB [p1ρ1 + p2ρ2]
via the 〈A〉〈B〉 term; “mixtures of minimal states”15 are not minimal.

What does Schrödinger’s inequality signify? Present copies of |ψ) (else states
drawn from the mixed ensemble ρ) many times to an A-meter and from the
meter readings {a1, a2, . . . , amany} compute the emperical mean ā and the
centered moments

(a − ā)p : p = 2, 3, 4, . . .

of which 〈A〉 and
〈
(A − 〈A〉)p

〉
= (ψ|

(
A − (ψ|A |ψ)

)p|ψ) else tr
(
ρ(A − trρA)p

)

by the Born Rule provide theoretical estimates. Do the same—in a separate
experimental run—with a B-meter. The Schrödinger inequality (1) describes an
inevitable relationship among the lowest-order moments {〈Ap〉, 〈Bp〉} : p = 1, 2,
the statement of which requires however that one have access also to data

〈C〉, 〈D〉 with C = 1
2i (A B − B A), D = 1

2 (A B + B A)

acquired from two additional experiments.

There is, of course, no end to the list {A , B , C , D , E , F , G , . . .} of
observables of which one could construct moments of all orders, and indeed;
quantum mechanics can in its entirety be portrayed as a “theory of interactive
moments.”16 Schrödinger’s “binary preoccupation”—his interest in a universal
relationship among the lowest-order moments of a pair of observables—would in
this light seem arbitrarily restrictive but for the clarity of its conceptual roots.

15 I place the phrase between quotation marks because actually it does not
make unambiguous sense to speak of the states from which a quantum mixtures
has been assembled.

16 See my Advanced Quantum Topics(2000), Chapter 2, pages 51–60.
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The Hamiltonian formulation of classical mechanics is erected upon the notion
that dynamical variables occur in conjugate pairs {q, p}—a notion which leads
naturally (via the Poisson bracket) to the more general concept of conjugate
observables. Heisenberg’s early efforts led Born (1926) to the realization that
in quantum theory the role of the classical variables {q, p} is taken over by
objects {q , p} that fail to commute, and that the statement q p − p q = i! I
must lie at the foundation of any mature quantum theory, from which Dirac
(and independently Jordan) promptly drew the qualitative conclusion (1926)
that “one cannot answer any question on the quantum theory which refers
[simultaneously] to numerical values of both q and p.” Heisenberg undertook
(1927) to quantify that assertion, and by a Fourier-analytic argument17 was
led to a statement ∆q∆p = ! for which he then considered himself obliged
to provide a physical explanation. This led Heisenberg and others (Ruark,
Kennard) to inquire closely into the physics of measurement (and to attempts
to design experiments that would achieve ∆q∆p < !)—an effort from which we
inherit the “Heisenberg microscope.” Meanwhile, Condon and Robertson were
looking more closely to the purely mathematical ramifications18 of [q , p ] = i! I
and, more generally, of [A , B ] = i! I . Robertson—who by 1929 had ψ(x) and
the rest of the Schrödinger formalism at his disposal—obtained

[ ∫
ψ∗(A − A0)2ψdx

] 1
2
[ ∫

ψ∗(B − B0)2ψdx

] 1
2

≥ 1
2i

∫
ψ∗[A , B ]ψ dx

⇓
∆x∆p ≥ 1

2!

and it was from Robertson’s argument that Schrödinger took the clues that led
to (1).

While arguments involving devices like Heisenberg’s microscope do allude
—if in a contingent, phenomenological way—to the simultaneous measurement
of x and p, Schrödinger’s does not, except in this sense: it alludes to properties
“simultaneously latent” in |ψ), and placed him in position to describe the states
—solutions of Cx p [|ψ)] = 0—which, when subjected to the multi-measurement
protocol described previously, can be expected to yield results ∆x and ∆p for
which ∆x∆p = 1

2! is realized. The individual measurements contemplated in
that protocol are idealized von Neumann (projective) measurements, each of
which prepares one or another of the eigenstates of x else p (more generally A
else B), but none of which prepares |ψmin).

Schrödinger did not contemplate a simultaneous measurement of x and p,
so had nothing to about either how such a measurement might be undertaken
or what might in principle be its optimal result. The first to do so were Arthurs
and Kelly.1 Their paper—partly because of its terse obscurtity—inspired other

17 See Jammer, page 327.
18 It was unclear at the time whether Heisenberg had touched upon a

fundamental feature of quantum physics or merely an artifact of the quantum
formalism that was struggling to take shape.
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authors to devise alternative approaches19 to solution of the simultaneous
measurement problem, all of which involve “generalized measurements” of one
form or another; i.e., relaxation of von Neumann’s projection postulate:
accepting that conjugate observables do not admit of simultaneous
measurement with ideal devices, one undertakes to do the best that can be
done with imperfect/noisy devices. I sketch several of those approaches to the
solution of that problem in the next few sections of this paper.20

Simultaneous measurement according to Arthurs & Kelly. The system S under
observation and a pair of detectors D1 and D2 comprise a composite system

S = S ⊗ D1 ⊗ D2

We might, for concreteness, suppose S to be an oscillator; more critically, we
consider D1 and D2 to be free-particle-like, except that “position” refers now
not to the position of a particle but to the position of a “pointer.” The initial
state of the composite system is assumed to have the disentangled structure

|Ψ)before = |ψ) ⊗ |ϕ1) ⊗ |ϕ2) ≡ |ψ)|ϕ1)|ϕ2)

which in the space/space/space representation becomes

(q, x, y|Ψ)before = ψ(q) ⊗ ϕ1(x) ⊗ ϕ2(y) ≡ ψ(q)ϕ1(x)ϕ2(y)

Measurement is accomplished by brief (time-reversible) unitary evolution

|Ψ)before −→ |Ψ)t = U(t)|Ψ)before

where

U(t) = e−iH t with H = 1
τ

{
− λ1(q ⊗ p1 ⊗ I) + λ2(p ⊗ I ⊗ p2)

}

19 See, for example, C. Y. She & H. Heffner2; S. L. Braunstein, C. M. Caves
& G. J. Milburn, “Interpretation for a positive P representation,” Phys. Rev A
43, 1153-1159 (1991); Stig Stenholm, “Simultaneous measurement of conjugate
variables,” Annals of Physics 218, 223-254 (1992); M. G. Raymer, “Uncertainty
principle for joint measurement of noncommuting variables,” AJP 62, 986-993
(1994); U. Leonhardt, Measuring the Quantum State of Light (1997), Chapter 6;
Yoshihisa Yamamoto & Ataç İmamoḡlu,10 §1.4.

20 A notational remark: I have (following Schrödinger) previously written
A and B to emphasize that the operators in question are general; i.e., that
they may or may not be conjugate. I will henceforth write X and P when I
want to emphasize that the operators in question are assumed to be conjugate,
though they may or may not (but in physical applications usually will) signify
“position” and “momentum.” Traditionally I have reserved double-struck
characters A, B, etc. for use when I wanted to emphasize that the objects
in question were matrices. But I am at risk of running out of symbols, so
abandon that convention.
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Here [λ1] = (length×momentum)−1, [λ2] = (momentum)−2 and τ , which
controls the strength of the interaction (assumed to be so brief that
Hamiltonian terms that in the absence of interaction would generate the
dynamics of the system and detectors can be neglected), has dimension
[τ ] = (time)−1, and I have set ! = 1. The detector momenta p1 and p2

will serve to generate spatial translations of thte pointers. Turning off the
interaction at time t = τ , we have

|Ψ)before −→ |Ψ)after = U(τ)|Ψ)before

but while the measurement is in progress we (in the Schrödinger picture) have
∂
∂tΨ(q, x, y, t) = −i 1

τ (q, x, y|H |Ψt)

= − 1
τ

{
λ1q

∂
∂x − iλ2

∂
∂q

∂
∂y

}
Ψ(q, x, y, t)

⇓{
∂
∂t + 1

τ λ1q
∂
∂x − i 1

τ λ2
∂
∂q

∂
∂y

}
Ψ(q, x, y, t) = 0 (6)

subject to the initial condition Ψ(q, x, y, 0) = ψ(q)ϕ1(x)ϕ2(y) (where a couple
of ⊗s have been surpressed). Fourier transforming with respect to y

Ψ(q, x, y, t) = 1√
2π

∫
Ψ̃(q, x, k, t)eikydk

we have

1√
2π

∫ {
∂
∂t + 1

τ λ1q
∂
∂x + 1

τ λ2k
∂
∂q

}
Ψ̃(q, x, k, t)eikydk = 0

We are informed by Mathematica that solutions of the first-order partial
differential equation

{
∂
∂t + 1

τ λ1q
∂
∂x + 1

τ λ2k
∂
∂q

}
F (q, x, t) = 0

are of the form

F (q, x, t) = F
(
a(q, t), b(q, x)

)
where

{
a(q, t) = q − kλ2 t/τ
b(q, x) = x − λ1q2/2kλ2

We notice that a(q, 0) = q and to achieve x at time t = 0 construct

c(q, x, t) = b(q, x) + (λ1/2kλ2)a2(q, t)

= x − λ1q t/τ + 1
2kλ1λ2(t/τ)2

Initially we have Ψ̃(q, x, k, 0) = ψ(q)ϕ1(x) ϕ̃2(k) so at time t = τ

Ψ(q, x, y, τ) = 1√
2π

∫
ψ

(
a(q, τ)

)
ϕ1

(
c(q, x, τ)

)
ϕ̃2(k)eikydk

= 1√
2π

∫
ψ

(
q − kλ2

)
ϕ1

(
x − λ1q + 1

2kλ1λ2

)
ϕ̃2(k)eikydk (7)

which Arthurs & Kelly are content to present without comment, though it lies
at the heart of their paper.
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Arthurs & Kelly assume plausibly that the initial states of the detectors
are centered-Gaussian:

ϕ1(x) =
[

1√
2πσ1

e−
1
2 (x/σ1)

2
] 1

2
and ϕ2(y) =

[
1√

2πσ2
e−

1
2 (y/σ2)

2
] 1

2

To this they bring the ad hoc assumption—which will acquire motivation in the
course of their argument—that the Gaussians are “balanced” in the sense that
σ1σ2 = 1

4 . Writing σ1 = (4σ2)–1 = 1
2

√
b (Arthurs and Kelly call b the “balance

parameter”) we have

ϕ1(x) =
( 2

πb

)1
4
e−x2/b and ϕ2(y) =

(2b
π

)1
4
e−by2

= 1√
2π

∫
ϕ̃2(k) eikydk

ϕ̃2(k) =
( 1

2πb

)1
4
e−k2/4b

giving

Ψ(q, x, y, τ) = 1√
2π

∫
ψ

(
a(q, τ)

)
ϕ1

(
c(q, x, τ)

)
ϕ̃2(k)eikydk

= (1/8π3b)
1
4 ·
∫

ψ
(
q − kλ2

)
ϕ1

(
x − λ1q + 1

2kλ1λ2

)
e−k2/4b eikydk

The λ-parameters were introduced for dimensional reasons, but to simplify the
notation we henceforth assume the numerical values of both to be unity; then

= C1(b)·
∫

ψ
(
q − k

)
ϕ1

(
x − q + 1

2k
)
e−k2/4b eikydk (8)

with C1(b) = (1/8π3b) 1
4 .21 Write k → - = q − k to introduce an alternative

variable of integration, get

= C1·
∫

ψ(-) ϕ1

(
x − 1

2 (q + -)
)
e−(q−%)2/4bei(q−%)yd-

↓

|Ψ(q, x, y, τ)| = C1·
∣∣∣∣
∫

ψ(-) ϕ1

(
x − 1

2 (q + -)
)
e−(q−%)2/4be−i%yd-

∣∣∣∣

Drawing upon the assumed Gaussian structure of ϕ1(x) we obtain

= C1

( 2
πb

)1
4
∣∣∣∣
∫

ψ(-) exp
{
− (x − q)2 + (- − x)2

2b

}
e−i%yd-

∣∣∣∣

= C2 exp
{
− (x − q)2

2b

}
·
∣∣∣∣
∫

ψ(-) exp
{
− (- − x)2

2b

}
e−i%yd-

∣∣∣∣

with C2 = C1 · (2/πb) 1
4 = (2/π2b) 1

2 .

21 I am indebted to Ray Mayer for the following line of argument (note taped
to my door, 31 October 2012).
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The position/momentum operators of the detector system D1 commute
with those of D1, so projective measurements of the pointer positions x and y
are compatable (can be performed simultaneously) and it makes sense to speak
of the joint distribution P (x, y), which is itself a conditional distribution; we
have

P (x, y) ≡
∫

|Ψ(q, x, y, τ)|2dq

= C 2
2

∫
exp

{
− (x − q)2

b

}
dq ·

∣∣∣∣
∫

ψ(-) exp
{
− (- − x)2

2b

}
e−i%yd-

∣∣∣∣
2

= C3 ·
∣∣∣∣
∫

ψ(q) exp
{
− (q − x)2

2b

}
e−i q ydq

∣∣∣∣
2

(9.1)

with C3 = C 2
2

√
πb =

√
1/4π3b and where in the final equation I have adjusted

the name - → q of the integration variable.

Had we (so far as S is concerned) elected to work not in the q -representation
but in the p -representation—writing Φ(p, x, y, t) to describe the state of the
composite system—the Schrödinger equation (again set ! = λ1 = λ2 = 1) would
have read {

∂
∂t − i 1

τ
∂
∂p

∂
∂x − 1

τ p ∂
∂y

}
Φ(p, x, y, t) = 0

Fourier transforming with respect now to x

Φ(q, x, y, t) = 1√
2π

∫
Φ̃(p, k, y, t)eikxdk

we have {
∂
∂t + 1

τ k ∂
∂p − 1

τ p ∂
∂y

}
Φ̃(p, k, y, t) = 0

Φ̃(p, k, y, 0) = φ(p) ϕ̃1(k) ϕ2(y)

giving (again with Mathematica’s assistance)

Φ(p, x, y, t) = 1√
2π

∫
φ(p − 1

τ kt) ϕ̃1(k) ϕ2(y + 1
τ pt − 1

2τ2 kt2)eikxdk

⇓

= 1√
2π

∫
φ(p − k) ϕ̃1(k) ϕ2(y + p − 1

2k)eikxdk at t = τ

Again invoke the assumption that the intitial detector states are Gaussian

ϕ̃1(k) =
(

b
2π

)1
4
e−

bk2
4 and ϕ2(y) =

(2b
π

)1
4
e−by2

and obtain (after a change of variables k → p − - and some simplification)

|Φ(p, x, y, τ)| = C4

∣∣∣∣
∫

φ(-) exp
{
− b(y + q)2 + b(- + y)2

2

}
e−i%xd-

∣∣∣∣

= C4 exp
{
− b(y + p)2

2

}
·
∣∣∣∣
∫

ψ(-) exp
{
− b(- + y)2

2

}
e−i%xd-

∣∣∣∣
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where C4 = b/2π2. Therefore

P (x, y) =
∫

|Φ(p, x, y, τ)|2dp

= C5 ·
∣∣∣∣
∫

φ(p) exp
{
− b(p + y)2

2

}
e−ipxdp

∣∣∣∣
2

(9.2)

where
C5 = C 2

4

∫
exp

{
− b(y + p)2

}
dp =

√
b/4π3

and in (9.2) I have again adjusted the name - → p of the integration variable.22
Equations (9) say the same thing in different ways.

Assume by way of example23 that initially

ψ(q) =
( 1

2πσ2

)1
4
e−q2/4σ2

=
√

Gaussian

0

φ(p) =
(2σ2

π

)1
4
e−p2σ2

Looking to |ψ(q)|2 and |φ(p)|2 we see that the data generated when q and p
are subjected to independent projective measurements are expected to have
variances

σ 2
q = σ2 and σ 2

p = 1/4σ2

We expect by the Heisenberg uncertainty principle to have σqσp ≥ 1
2 (recall

! = 1) but in the present instance have σqσp = 1
2 since ψ(q) is a minimally

dispersive state. Whether we work from (9.1) or (9.2), we find

P (x, y) = σ
√

2b
π(b + 2σ2)

exp
{
− x2 + 2bσ2y2

b + 2σ2

}

and verify that
∫∫

P (x, y)dxdy = 1. The associated marginal distributions are

Q(x) =
∫

P (x, y)dy = 1√
π(b + 2σ2)

exp
{
− x2

b + 2σ2

}

P (y) =
∫

P (x, y)dx =
√

2bσ2
√

π(b + 2σ2)
exp

{
− 2bσ2 y2

b + 2σ2

}

22 To obtain the Schrödinger equation (6)—which agrees with Arthurs &
Kelly—I have been obliged to introduce a minus sign into the interaction
Hamiltonian H which is absent from A & K. And because in the momentum
representation q becomes −i∂p (A & K appear to have overlooked the minus
sign) I at (9.2) have exp{−b(p + y)2/2} instead of their exp{−b(p − y)2/2}.

23 This example has been selected because it leads to integrals that can be
done in closed form.
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which are in this instance seen to be Gaussian:

Q(x) = 1√
2πσ 2

x

e−x2/2σ 2
x with σ 2

x = σ2 + 1
2b

P (y) = 1√
2πσ 2

y

e−y2/2σ 2
y with σ 2

y =
σ2 + 1

2b

2bσ2
= 1

4

[
(σ2)–1 + ( 1

2b)–1
]

So when {q , p} are subjected to a series of simultaneous A&K-measurements
and the resulting detector pointer-positions {x, y} measured projectively, the
expected variances of the latter data are

σ 2
x = σ 2

q + 1
2b

σ 2
y = σ 2

p + 1
2b–1

}
(10)

From
d(σ 2

xσ 2
y )

db
= b2 − 4σ2

8b2σ2
= 0 =⇒ 1

2b = σ2

we discover (compare σqσp ≥ 1
2 ) that

σxσy ≥ 1 (11)

with equality if and only if the balance parameter b and ψ -structure stand in
the tuned relationship b = 2σ2.

The product structure that was assumed to pertain initially to Ψ(q, x, y, t)
was seen at (8) to have been lost during the course of the dynamical interaction
of the system and detectors; the states of S and {D1,D1} have become entangled.
At the completion of the A & K measurement that caused the detector pointers
to register {xm, ym} the post-measurement state of S is

ψafter(q ; xm, ym) = N –1Ψ(q, xm, ym, τ) with N =
[ ∫

|Ψ(q, xm, ym, τ)|2dq

]1
2

where by (8)

Ψ(q, xm, ym, τ) = C2 exp
{
− (xm − q)2

2b
+ iqym

}

·
∫

ψ(-) exp
{
− (- − xm)2

2b

}
e−i%ymd-

The integral is a complex number: call it Aeiα. We now have

Ψ(q, xm, ym, τ) = C2 exp
{
− (xm − q)2

2b
+ iqym

}
Aeiα

and the normalization factor becomes

N = C2

[ ∫
exp

{
− (xm − q)2

b

}
dq

]1
2

A = C2(πb)
1
4 A
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giving

ψafter(q ; xm, ym) =
( 1

πb

)1
4

exp
{
− (q − xm)2

2b
+ iqym

}
· e−iα (12.1)

where the final phase factor is unphysical and can be discarded. Fourier
transforming to the momentum representation, we get

φafter(p ; xm, ym) =
(

b
π

)1
4

exp
{
− b(p − ym)2

2
− ipxm

}
· ei(xmym−α) (12.2)

where again the phase factor can be discarded. The states (12) are readily seen
to be normalized:

∫
|ψafter(q ; xm, ym)|2dq =

∫
|φafter(p ; xm, ym)|2dp = 1. The

associated probability densities are Gaussian

|ψafter(q ; xm, ym)|2 =
( 1

πb

)1
2

exp
{
− (q − xm)2

b

}
(13.1)

|φafter(p ; xm, ym)|2 =
(

b
π

)1
2

exp
{
− b(p − ym)2

}
(13.2)

with variances σ 2
q = 1

2b and σ 2
p = 1

2b –1 that (for a familiar Fourier-analytic
reason, nothing more profound) satisfy σqσp = 1

2 .

The idealized projective action of an A -meter can, as we have seen, be
described

|ψ)before −→ |ψ)after = some normalized eigenvector |a) of A

The initial state |ψ)before is destroyed by the measurement process, and the
prepared state |ψ)after conveys no indication of what |ψ)before might have been,
conceals no “memory” of |ψ)before.24 Note that the states (12) prepared by the
A & K procedure are similar in that regard: they contain no reference to the
pre-measurement S-state ψ(q). Note also that (13) supplies

lim
b↓0

|ψafter(q ; xm, ym)|2 = δ(q − xm)

lim
b↓0

|φafter(p ; xm, ym)|2 = 0

of which the former can be interpreted to refer to the result of a projective

24 From the statistical structure of indefinitely many such measurements
one can constuct estimates of the real numbers |(a|ψ)before|, but from that
information it is still not possible in the absence of all complex phase data to
reconstruct

|ψ)before =
∫

|a)da(a|ψ)before

Efforts to “measure the quantum state of S” would appear therefore to be funda-
mentally misguided unless one is prepared to bring into play ideas and methods
that lie beyond the reach of the von Neumann formalism. In Ulf Leonhardt’s
Measuring the Quantum State of Light (1997) the method is tomographic.
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q -measurement, and the latter to provide indication that after such a
measurement the expected value of p is indeterminate. The situation is reversed
in the limit b ↑ ∞.

The fact that xm and ym enter in distinctive ways into (12.1) is easily
understood. At ym = 0 we have

ψafter(q ; xm, 0) =
( 1

πb

)1
4

exp
{
− (q − xm)2

2b

}

= Gaussian wavepacket in q-space

Introduction of the factor exp
{
iq ym

}
serves to “launch” the wavepacket.25

The circumstance that q and p enter jointly into the A & K formalism
brings to mind Wigner’s “phase space formulation of quantum mechanics,”
wherein to every ψ(q) is associated a “Wigner quasi-distribution”26

Pψ(q, p) = (π!)–1
∫

ψ∗(q + ξ) e2 i
! pξ ψ(q − ξ) dξ

Feeding (10.1) into the integral (with ! again set to unity) we compute

= π –1 exp
{
− (q − xm)2

b

} ∫
exp

{
− ξ2 − i2b(p − ym)ξ

b

}
dξ

= exp
{
− (q − xm)2

b
− b(p − ym)2

}
(14)

which could hardly be prettier. We verify that
∫∫

Pψ(q, p)dqdp = 1 and observe
that the Wigner distribution (14) is in fact a proper distribution: it becomes
nowhere negative. The distribution (14) is encountered at (30) on page 14 of
the notes just cited26 and at (3.35) on page 48 of Leonhardt’s monograph.24

The Arthurs/Kelly paper provides a solitary reference to the literature,
that being to vonNeumann’s Mathematical Foundations ofQuantumMechanics.
Quoting from their introductory paragraph, “Just as von Neumann uses an ideal
measurement together with an interaction to explain an indirect observation, we
use ideal measurements together with interactions to explain the simultaneous
measurement of an observable and its conjugate.” The argument to which they
allude appears on the final three pages of von Neumann’s classic monograph, at
the end of his Chapter VI: “The Measuring Process.” I provide now an account
of von Neumann’s argument, phrased so as to facilitatte comparison with the
argument devised by Arthurs & Kelly.

Write Ψ(q, x, t) to describe the devolving state of the composite system
that consists of S (initial state ψ(q)) and a solitary detector D (initial state
φ(x1)). The dynamical interaction is driven by a Hamiltonian of the form

25 See (25) page 9 in my “Gaussian wavepackets” (1998).
26 See Advanced Quantum Topics (2000), Chapter 2, page 10.
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H = − 1
τ q ⊗ p1

The Schrödinger equation27 reads i∂tΨ = − 1
τ q(i∂x)Ψ or

{
∂t + 1

τ q∂x

}
Ψ = 0

solutions of which are of the form F
(
q, x− 1

τ q t
)
, which at t = 0 becomes F

(
q, x

)
.

So
Ψ(q, x, t) = ψ(q)φ

(
x − 1

τ q t
)

↓
= ψ(q)φ(x − q) at t = τ

in which the S and D variables have become entangled. Assume that the initial
(pre-measurement) states ψ(q) and φ(x) normalized. Then

|Ψ(q, x, 0)|2 = 1 −−−−−−−−−−−−−−−−→
evolution is unitary

|Ψ(q, x, t)|2 = |ψ(q)|2 · |φ(x − q)|2 = 1

and the marginal q -probability is

P (q) = |ψ(q)|2
∫

|φ(x − q)|2dx = |ψ(q)|2

von Neumann remarks parenthetically that because q and x are continuous they
can be measured “with arbitrary but not with absolute precision.” Suppose φ(x)
is—like (say) a narrow Gaussian—non-zero only in the immediate neighborhood
of the origin (−δ < x < +δ). Suppose, moreover, that a projective inspection
of the detector at time τ shows the pointer to be at xm. We can conclude that
the post-measurement probability density |ψafter(q)|2 is localized at q ≈ xm

∫ xm+δ

xm−δ
|ψafter(q)|2 dq ≈ 1

and that the prepared state ψafter(q) of S is of the form

ψafter(q) = f(q) iα(q)

where concening the localized function we know only that

∫ xm+δ

xm−δ
f2(q)dq ≈

∫ +∞

−∞
f2(q)dq = 1

while α(q) remains entirely undetermined.

27 I write p1 to distinguish the momentum of D from that of S, but will drop
the pedanatic subscript from x1. As has been our custom, we set ! = 1, though
in the present instance the ! -factors would cancel anyway.
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Abstract essentials of theArthurs/Kelly formalism. Familiarly, one cannot assign
simultaneously precise values to the position and momentum of a quantum
state because [q , p ] (= 0 .28 Arthurs & Kelly, building upon the framework
erected by von Neumann, looked therefore to the construction of states to which
simultaneously imprecise position/momentum values can be assigned in a best-
possible way.29 In the final paragraphs of their paper they sketch an abstract
generalization of their simultaneous measurement procedure. Leonhardt, in
§6.1.1 of Chapter 6 (“Simultaneoous measurment of position and momentum”)
in the monograph previously cited,24 presents a clarified paraphrase of the A/K
argument upon which I base the following remarks.

Introduce near-variants of q and p

Q = q + A

P = p + B

where the “noise terms” A and B model the imprecision which we propose to
introduce into the measurement process. Impose upon {Q , P} the simultaneous
measureability requirement [Q , P ] = [q , p ]+[q , B ]+[A , p ]+[A , B ] = 0 , which
(recall ! = 1) we write

[A , B ] = −i I − [q , B ] − [A , p ] (15)

Look now to the noisy analog ∆2Q∆2P of ∆2q∆2p ≥ 1
4 . We have

∆2Q =
〈
(q + A)2

〉
−

〈
q + A

〉2

=
〈
q2

〉
−

〈
q
〉2 +

〈
q A

〉
−

〈
q
〉〈

A
〉

+
〈
A q

〉
−

〈
A

〉〈
q
〉

+
〈
A2

〉
−

〈
A

〉2

and if we impose upon the noise operator A the (plausible?) assumption that
for all states 〈A〉 = 〈q A〉 = 〈A q〉 = 0 obtain (compare (10))

∆2Q = ∆2q +
〈
A2

〉
(16.1)

Similarly
∆2P = ∆2p +

〈
B2

〉
(16.2)

Therefore

∆2Q∆2P = ∆2q ∆2p + 2
∆2q

〈
B2

〉
+ ∆2p

〈
A2

〉

2
+

〈
A2

〉〈
B2

〉

Leonhardt draws at this point upon the fact the if a and b are non-negative real
numbers then

a + b
2

≥
√

ab : “arithmetic mean dominates geometric mean”

with equality if and only if a = b (this is the simplest instance of a large class

28 That statement pertains, of course, to any pair (or expanded set) of non-
commutative observables, whether or not they happen to be “conjugate” in the
sense [A , B ] = i I .

29 Look back, in this light, to (12).
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of lovely inequalities of which the Wikipedia article “Inequality of arithmetic
and geometric means” provides a good account) . . . to write

∆2Q∆2P ≥ ∆2q ∆2p + 2 ∆q∆p
√〈

A2
〉〈

B2
〉

+
〈
A2

〉〈
B2

〉

=
[
∆q ∆p +

√〈
A2

〉〈
B2

〉 ]2

⇓

∆Q∆P ≥ 1
2 +

√〈
A2

〉〈
B2

〉

with equality if and only if ∆2q
〈
B2

〉
= ∆2p

〈
A2

〉
. Retaining the presumption

that 〈A〉 = 〈B〉 = 0 we have ∆2A =
〈
A2

〉
and ∆2B =

〈
B2

〉
, so by Schrödinger’s

inequality (1.1)
〈
A2

〉〈
B2

〉
≥

〈
[A , B ]

2i

〉2

which by (15) becomes

=
[−

〈
i I

〉
−

〈
[q , B ]

〉
+

〈
[p , A ]

〉

2i

]2

=
[
− 1

2 − 0 + 0
]2

= 1
4 (17)

giving

∆Q ∆P ≥ ∆q ∆p + 1
2 (18)

≥ 1

We have here reproduced—by a relatively more abstract/general line of
argument—a fundamental result that on page 16 was phrased σxσy ≥ 1. It
serves to quantify the price one necessarily pays for simultaneous measurement.

The quantum states (12) that result from application of the A/K model
of a simultaneous measurement process are “minimal dispersion” states, in the
sense mentioned on page 7. They give rise to Wigner distributions (14) that
serve via

b–1(x − xm)2 + b(p − ym)2 = constant
to inscribe {xm, ym}-centered curves on phase space—curves that are circular
if b = 1 and otherwise elliptical (“squeezed”). Noting the structural similarity
of (10) and (16), we observe the the product of the dangling terms in (10) is
( 1
2b)( 1

2b–1) = 1
4 while the associated product in (16) is (in the optimal case:

see (17))
〈
A2

〉〈
B2

〉
= 1

4 . Since the shape of the Wigner ellipse is controlled
by b =

[
( 1
2b)/( 1

2b–1)
]1/2 it becomes natural to assign similar significance to the

ratio
[〈

A2
〉/〈

B2
〉]1/2, which by Leonhardt’s optimality condition ∆2q

〈
B2

〉
=

∆2p
〈
A2

〉
becomes

[
∆q/∆p

]1/4. And indeed, what Leonhardt and others call
the “sqeezing parameter” is defined

ζ = 1
4 log(∆p/∆q) = 1

4 log
(〈

B2
〉/〈

A2
〉)

= 0 in the circular case (no sqeezing)
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Simultaneous measurements of conjugate observables are necessarily
imperfect measurements. The question arises: Can the formal devices employed
by Arthurs and Kelly be used to describe imperfect measurements of a single
observable—a noisy von Neumann process? Write

Q = q + A

⇓
Q2 = q2 + q A + A q + A2

Assume (as Arthurs/Kelly did) that 〈A〉 = 〈q A〉 = 〈A q〉 = 0 for all |ψ). Then

∆2Q = ∆2q + ∆2A

Such a theory is too impoverished to set a natural bound on ∆2A. And it exposes
with stark clarity a problem that bedevils also Arthurs/Kelly’s formal theory of
simultaneous measurement: If (as was implicitly assumed at every step, as when
we appealed to Schrödinger’s inequality) A refers to a self-adjoint operator

A =
∫

|a)a da(a|

then how is it possible to achieve 〈A〉 = 0 for all |ψ)? That would require that
every |ψ) lies in the null space of A (effectively: A = 0), and would entail

∆2A = 〈A2〉 = 0

I am inclined, therefore, to dismiss Arthurs/Kelly’s formal theory as a suggestive
hoax, a provocative idea that stands in need of more careful development.
Curiously, the fundamental defect to which I have drawn attention does not
appear to offend Leonhardt, whose frequent reference to “fluctuations” seems
intended to forgive all sins.

Arthurs/Kelly’s dynamical model is susceptible to criticisms of a different
sort. Since presented as the analysis of an idealized “gedanken experiment,” we
can dismiss as irrelevant the circumstance that A/K provide no indication of
how their interaction Hamiltonian might be realized physically, or of how the
interaction is to be switched off at time t = τ .30 More significantly, their ad hoc
assumption that the initial detector states are balanced Gaussians remains—
though central to the analytical details of their paper—quite unmotivated.

Construction of conjugate pairs & the number-phase problem. Can Arthurs/
Kelly’s gedanken experiment be realized as a physical experiment? In a
pedagogical paper—valuable not least for its extensive bibliography, and in
which no actual experimental results are reported—Michael Raymer31 shows

30 The latter criticism can be made also of von Neumann’s model, and of
many theoretical contributions to the quantum computation literature.

31 “Uncertainty principle for joint measurement of noncommuting variables,”
AJP 62, 986-993 (1994).
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how a simple single slit set-up might be used to accomplish a simultaneous
measurement of position and momentum. Raymer emphasizes that such
measurements are necessarily imprecise measurements. He proceeds without
explicit reference to the Hamiltonian-generated interaction of system (in this
instance a projected particle) and detectors by means of a formalism that is, as
it happens, quite similar in its essentials to the formalism I once had occasion
to sketch,32 but which he works out in much greater detail than I attempted,
and carries to a point where he becomes able establish contact with Arthurs &
Kelly.

Quantum optics provides the conceptual and experimental apparatus that
is used most commonly to probe the foundations of quantum theory.33 It
is, therefore, not surprising that Leonhardt devotes the greater part of his
final Chapter 6 (“Simultaneous measurement of position and momentum”)
to discussion of some relevant quantum optical issues. Central to quantum
optical theory are non-hermitian operators {ak, ak

+} that permit one to move
around in the Foch space of quantum field modes. Those operators satisfy
commutations relations of a form [a , a+] = I identical to the [W , W+] = I
satisfied by operators that were encountered already on page 4. Running in
reverse the remark that motivated the introduction of W , we observe that the
hermitian operators

q = 1√
2
(W+ + W) and p = i 1√

2
(W+ − W)

are conjugate
[q , p ] = i I

and (when decorated with suitably-dimensioned factors) can be interpreted to
comprise “position” and “momentum” operators in whatever context they arise.
In quantum optics one writes

X1 = 1√
2
(a+ + a) and X2 = i 1√

2
(a+ − a)

and calls {X1, X2} “quadrature operators.”34

32 “Quantum measurement with imperfect devices,” notes for a Reed College
Physics Seminar presented 16 February 2000. See also my “First steps toward
a theory of imperfect meters” on pages 10-11 in “Generalized Quantum
Measurement: Imperfect Meters and POVMs” (September 2012).

33 Raymer—prolific founding director of the Oregon Center for Optics—is
a leading experimentalist in the field, which may account for his interest in
the work of Arthurs & Kelly; shortly before the 1996 AJP paper was written
he and his group had completed some trail-blazing in a closely related area:
see M. Beck, D. T. Smithey, J. Cooper & M. G. Raymer, “Experimental
determination of number-phase uncertainty relations,” Opt. Lett 18, 1259
(1993); “Measurement of number-phase uncertainty relations of optical fields,”
Phys. Rev. A 48, 3159 (1993).

34 See, for example, C. Gerry & P. Knight, Introductory Quantum Optics
(2005), page 17. The X i are, in effect, conjugate coordinates of the “field
oscillators” (oscillatory field modes).
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Experimentalists—whether they propose to proceed quantum optically of
mechanically—might look to established uncertainty relations

position -momentum
time -energy

angle -angular momentum
phase -number

for contexts within which to work. Relatedly, they might notice that conjugate
operators q and p can be used to construct conjugate pairs

Q = Q(q , p) and P = P (q , p)

in a seemingly infinitely many ways, of which some will be more useful than
others. For example,

[q , p ] = i I =⇒
{

[Q , P ] = i I with Q = q + f(p), P = p
[Q , P ] = i I with Q = q , P = p + g(q)

But Weyl showed long ago that it all realizations of the fundamental
commutator are unitarily equivalent: it is always possible to write

Q = U q U –1, P = U p U –1 with U unitary

(good news, since otherwise quantum mechanics would split into disjoint
fragments). If, for example, we set U = eiG(q ) we get Q = q and P =
p + G′(q). There are, however, aspects of the {q , p} −→ {Q , P} process that
merit closer scrutiny. Here, since commutators become Poisson brackets in the
classical limit, the classical theory of canonical transformations provides useful
guidance. Look, for example, to the Hamiltonian dynamics of a free particle:
H(q, p) = 1

2mp2. Energy E is conserved, H(q, p) = E inscribes a curve (actually
a straight line of constant p =

√
2mE ) on the phase plane, along which the state

point moves with constant velocity v =
√

2E/m, so

T (q, p) = transit time {0, p} −→ {q, p}

= q√
2E/m

= mq/p

Looking to the “time-energy bracket” (analog of the “position-momentum
bracket35)

[T (q, p), H(q, p)] = ∂T
∂q

∂H
∂p

− ∂H
∂q

∂T
∂p

we find by computation that T (q, p) and H(q, p) are conjugate observables:

[T (q, p), H(q, p)] = 1

35 Note that dimensionally [time · energy] = [length · momentum] = [action].
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We are motivated by this result to introduce quantum observables36

H = 1
2m p2 and T = m 1

2 (q p –1 + p –1 q)

where we have used the simplest means to “hermitianize” T . Drawing formally
upon the identity [A , B C ] = [A , B ]C + B [A , C ] we compute

[T , H ] = [q , p ] = i I

This attractive result is, however, subject to several serious criticisms. In the
first place, we have too casually assumed that [p2, pn] = 0 remains valid even
when n < 0. In the Schrödinger representation we expect to have p –1 =

∫ q,
or actually p –1 =

∫ q
a since indefinite integrals are defined only to within an

additive constant. But

∂q

∫ q

a
f(q)dq −

∫ q

a
∂qf(q)dq = f(a)

so [p , p –1]f(q) = 0 pertains only to functions that vanish at the fiducial point:
f(a) = 0. More generally, [pn, p –1]f(q) = 0 iff f (n−1)(a) = 0. And we confront
also a second problem: for H and T to be of any quantum mechanical utility
they must be self-adjoint. From

∂(ψ∂φ) − ∂(φ∂ψ) = ψ∂2φ − φ∂2ψ

we see that H is self-adjoint (ψ|Hφ) = (φ|Hψ) only with respect to functions
that satisfy boundary conditions that insure

∫ b

a

{
∂(ψ̄ ∂φ) − ∂(φ∂ψ̄)

}
dq =

{
ψ̄ ∂φ − φ∂ψ̄

}∣∣∣
b

a
= 0

which is achieved most simply (and most commonly) by imposition of periodic
or box boundary conditions. The self-adjointness of the time operator T
imposes, however, a condition
∫ b

a
ψ̄(q)

[
q

∫ q

a
φ(x)dx+

∫ q

a
x φ(x)dx

]
dq =

∫ b

a
φ(q)

[
q

∫ q

a
ψ̄(x)dx+

∫ q

a
x ψ̄(x)dx

]
dq

the implications of which are much more obscure, but which appears on its face
to be much more restrictive. Moreover, T |τ) = λ|τ) in the q-representation
reads [

q

∫ q

a
τ(x)dx +

∫ q

a
x τ(x)dx

]
= λτ(q)

⇓
2q τ ′(q) + 3τ(q) = λτ ′′(q)

36 It is my dim recollection that the following T operator was considered long
ago by Bohm and Aharanov.
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Mathematica reports that solutions are linear combinations

τ(q) = c1HermiteH[− 3
2 , q/

√
λ] + c2Hypergeometric1F1[ 34 , 1

2 , q2/λ]

of Hermite “polynomials” of a negative fractional order and of a certain
confluent hypergeometric function. But both are seen when plotted to be
too unruly to make sense of. And anyway, what meaning could one attach
to a temporal eigenvalue, or a temporal eigenfunction? Pretty clearly, the
conditions which insure the self-adjointness of H do not—even in this simplest of
cases—imply the automatic self-adjointness of T . We therefore cannot conclude
from Schrödinger’s inequality that ∆H∆T ≥ 1

2!.

Look more generally to the classical system

H(q, p) = 1
2mp2 + U(q)

Energy conservation E = 1
2mq̇2 + U(q) leads to the transit-time construction37

∫
dt =

√
m
2

∫
1√

E − U(x)
dx

which motivates the definition

T (q, p) =
√

m
2

∫ q 1√
H(q, p) − U(x)

dx

Computation now as before supplies [T (q, p), H(q, p)] = 1. In the associated
quantum theory we have H = H(q , p) = 1

2m p2+U(q), but the specific meaning
of

T =
√

m
2

∫ q 1√
H(q , p) − U(x) I

dx

is not obvious,38 nor is it clear how one would undertake to demonstrate the
conjugacy of {T , H}. It is, however, already clear that we cannot expect T to
be self-adjoint with respect to the functions that render H self-adjoint.

Look now more particularly to the classical oscillator: U(q) = 1
2mω2q2.

From E = 1
2mp2 + 1

2mω2q2 we see that at the turning points (where p = 0 and
the energy is entirely potential) E = 1

2mω2a2 where a is the amplitude of the
oscillation. The transit time 0 → q ≤ a is

T (q, p) =
√

m
2

∫ q

0

1√
H − 1

2mω2x2
dx

∣∣∣∣
H= 1

2m p2+ 1
2 mω2q2

= 1
ω arctan(mω q/p)

37 See my Classical Mechanics (1983/84), page 269.
38 The Weyl transform (see Advanced Quantum Topics (2000), Chapter 2,

pages 4-7) supplies one possible way to proceed T (q, p)→T , but while attractive
in principal it looks to be unworkable in the present general context.
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Set m = ω = 1 to reduce notational clutter, get

H(q, p) = 1
2 (q2 + p2)

T (q, p) = arctan(q/p)

and verify that the Poisson bracket [T, H ] = 1. The equations

H(q, p) = constant and T (q, p) = constant

inscribe circles/rays on the phase plane, so the canonical transformation

{q, p} −→ {T (q, p), H(q, p)}

is in effect a transformation from Cartesian to polar coordinates. Oscillators are
“clocks,” in the sense that the moving phase point {q(t), p(t)} traces a circular
(generally elliptical) orbit with constant (energy-independent) angular velocity;
Hamilton’s canonical equations d

dtA = [A, H ] supply

d
dtT = [T, H ] = 1 =⇒ Tt = T0 + t

so in this context “time” and “angle” are equivalent notions.39 Useful insight
into the origin of the conjugacy statement [T, H ] = 1 follows from the
observation that if ξ(q, p) = q/p then

[ξ, H ] = 1 + ξ2

More generally, we have—either by direct calculation or by appeal to the general
identity [A, g(B)] = [A, B]g ′(B)

[ξn, H ] = n(ξn−1 + ξn+1) : n = 1, 2, 3, . . .

We have arctan ξ = ξ − 1
3ξ3 + 1

5ξ5 − 1
7ξ7 + · · · =

∑∞
n=0(−)n 1

2n+1ξ 2n+1 so

[
∑N

n=0(−)n 1
2n+1ξ 2n+1, H ] = 1 + (−)Nξ 2N+2

While lim
N→∞

(expression on the left) = [arctan ξ, H], it would be difficult to argue
that the expression on the right → 1. This appears to comprise yet another
indication that time/angle observables are pathological beasts.

Turning now to the associated quantum theory,40 from

q = 1√
2
(a+ + a)

p = i 1√
2
(a+ − a)

}
⇐⇒

{
a = 1√

2
(q + ip)

a+ = 1√
2
(q − ip)

39 When we reinstate the dimensioned physical parameters {m, ω} we get
Tt = T0 + ω t; “time” and “angle” become dimensionally distinct, but retain
their proportionality.

40 I borrow material from pages 4–7, but with notation adjusted

{A , B , W , W+} → {q , p , a , a+}

to conform to quantum optical convention.
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we have
N = a+a = 1

2 (q2 + p2 − I) = H − 1
2 I = a a+ − I

which differs from H only by an additive (zero-point energy) term, and in
quantum optical (bosonic quantum field-theoretic) contexts is called the
“number operator.” It’s eigenvalues n = {0, 1, 2, . . .} indicate how many field
quanta occupy the mode in question. The conjugate operator Φ is interpreted
to refer not to “time” but to angular “phase.” One might expect to be able to
write

[Φ, N ] = i I with Φ = arctan ξ

ξ = 1
2 (q p –1 + p –1 q)

but several serious problems immediately arise: (i ) The meaning of

p –1 = −i
√

2(a+ − a)–1

is unclear. (ii) To lend meaning to the symbol arctan ξ we might write

arctan ξ = lim
N→∞

N∑

n=0

(−)n 1
2n+1 ξ 2n+1

but then confront

[Φ, H ] = lim
N→∞

N∑

n=0

(−)n 1
2n+1 [ξ 2n+1, H ]

Iteration of the general identity [A , B C ] = [A , B ]C + B [A , C ] supplies

[ξ 2n+1, H ] =
2n∑

k=0

ξ k[ξ, H ]ξ 2n−k

Non-commutivity has produced here such a mess that it appears to be unfeasible
to demonstrate even formally (convergence questions aside) that [Φ, H ] = i I .
(iii) If Φ is so complicated as it now appears to be then proof (in whatever
sense turns out to be meaningful) of the self-adjointness of Φ appears to be
quite out of the question.

Many attempts to solve the “phase operator problem” have been devised
over the years.41 I mention only one. In the paper42 in which Dirac reported
his first attempt to construct a quantum electrodynamics he assumed that it is
possible to write

a+ =
√

N eiΦ ⇐⇒ a = e−iΦ
√

N (19)

41 For an exhaustive review, see P. Carruthers & M. M. Nieto, “Phase and
angle variables in quantum mechanics,” Rev. Mod. Phys. 40, 411-440 (1968).
A very nice brief account can be found in §2.7 of Gerry & Knight.31

42 Proc. Roy. Soc. (London) A114, 243 (1927).
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which presumes Φ+ = Φ. Then a+a = N while a a+ − a+a = I becomes

e−iΦ NeiΦ − N = I

giving e−iΦ N − Ne−iΦ = e−iΦ. Expand the exponentials and get

− i[Φ, N ] − 1
2! [Φ

2, N ] + i 1
3! [Φ

3, N ] + 1
4! [Φ

4, N ] − · · ·
= I − iΦ − 1

2!Φ
2 + i 1

3!Φ
3 + 1

4!Φ
4 − · · ·

Identification of the leading terms supplies

[Φ, N ] = i I

from which it follows that [Φk, N ] = ikΦk−1, which serve to establish

kth term on left = kth term on right : k = 2, 3, 4, . . .

Dirac’s argument achieves its elegance by postulating the existence of hermitian
operators

√
N and Φ such that a+ =

√
N eiΦ, but has nothing to say about their

explicit construction and supplies no explicit proof of self-adjointness. And, as
was first pointed out by L. Susskin & J. Glogower,43 Dirac’s argument leads to
contradictions. The root problem, as I see it, is that eiΦ = N− 1

2 a+ requires
N− 1

2 a+ to be unitary. But
a N –1 a+ (= I

because N =
∑∞

0 |n)n(n| and N |0) = 0 imply that N is singular: N –1 does not
exist. Dirac’s assumption (19) is untenable.

The short of it is this: In the absence well-defined self-adjoint “time” and
“phase” operators T and Φ—conjugate respectively to the Hamiltonian and
number operators H and N —it is impossible to construe statements of the forms
∆E∆T ≥ 1

2! and ∆N ∆Φ ≥ 1
2! to be instances of Schrödinger’s inequality.

And it certainly impossible to contemplate the “simultaneous measurement”
of energy/time or number/phase. Indeed, it is impossible to speak of “time
measurements” or “phase measurements” in any standard quantum mechanical
sense. The above uncertainty relations—which (particularly the former) are
of undeniably great practical importance—must arise from considerations and
procedures entirely separate from those of quantum measurement theory.33
The problems that bedevil the construction of T and Φ have been seen to be
essentially identical. It is—when one thinks about it—not clear what it would
mean to “measure T ,” and is presumably equally unclear what it would mean
to “measure Φ”: the announcements of detectors are spectrally based, and in
the absence of an operator there is no spectrum. For a recent contribution to

43 Physics 1, 49 (1964). J. S. Bell published his “On the Einstein Podolsky
Rosen paradox” on pages 195-200 in the same volume of that now-defunct
journal.
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to the quantum theory of time operators, see C. M Bender & M. Gianfreda,
“Matrix representation of the time operator.44 Michael Nieto45 has provided
a useful (if amusingly informal) summary of the substance and recent history
(through 1992) of work on the quantum phase problem.

One final remark before we take leave of this topic: It is interesting that
the classical theory of angle variables (London’s “Winklevariablen”) is so much
more tractable than its quantum counterpart. Look, for example,37 to the
3-component of angular momentum

L3 = x1p2 − x2p1

Introduce angles
α3 = arctan(x1/x2)
β3 = arctan(p1/p2)

and verify by Poisson bracket evaluation that α3 and β3 are both conjugate to
L3 : [L3, α3] = [L3, β3] = 1. Therefore φ3 = α3 − β3 commutes with L3:

[L3, φ3] = 0

Drawing upon the identity

arctan(a) − arctan(b) = arctan
(

a − b
1 + ab

)

we find
φ3 = arctan

(x1p2 − x2p1

x1p1 + x2p2

)

We observe finally that

[α3, β3] = x1p1 + x2p2

(x2
1 + x2

2)(p2
1 + p2

2)

44 http://arxiv.org/abs/1201.3838. This 13-page paper is dated 18 Jan 2012.
Google reports the existence of quite an extensive time operator literature.

45 “Quantum phase & quantum phase operators: some physics and some
history,” http://arxiv.org/abs/hep -th/9304036 (8 Apr 1993). Nieto reports
that Susskind & Glogower’s discovery of the defect in Dirac’s argument was
anticipated by F. London, “Winkelvariable und kanonische Transformationen
in der Undulationsmechanik,” Zeitscrhift für Physik 40,193 (1927). Here again,
Google reports the existence of an extensive literature.


